

European technical assessment

MKT Chemical anchor V for use in uncracked concrete

valid for

Chemical reaction anchor VBA

This document is for informational use only and does not underly the actualization process.

This document can not be used for advertising or other purposes unless otherwise approved by MÜPRO in advance. All rights reserved. Subject to change.

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0231 of 29 May 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Chemical Anchor V

Bonded fastener for use in concrete

MKT Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

MKT Herstellwerk 1 MKT Herstellwerk 3

12 pages including 3 annexes which form an integral part of this assessment

EAD 330499-00-0601

European Technical Assessment ETA-05/0231

English translation prepared by DIBt

Page 2 of 12 | 29 May 2018

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z33747.18 8.06.01-38/18

European Technical Assessment ETA-05/0231

English translation prepared by DIBt

Page 3 of 12 | 29 May 2018

Specific Part

1 Technical description of the product

The Chemical Anchor V is a bonded anchor consisting of a glass capsule V-P and a threaded anchor rod with hexagon nut and washer. The anchor rod (including nut and washer) is made of zinc-plated steel, hot-dip galvanised steel, stainless steel or made of high corrosion resistant steel.

The glass capsule is placed into the hole and the anchor rod is driven by machine with simultaneous hammering and turning. The anchor rod is anchored via the bond between anchor rod, chemical mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance to tension load	See Annex		
(static and quasi-static loading)	C 1		
Characteristic resistance to shear load	See Annex		
(static and quasi-static loading)	C 2		
Displacements	See Annex		
(static and quasi-static loading)	C 1 and C 2		
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed		

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z33747.18 8.06.01-38/18

European Technical Assessment ETA-05/0231

Page 4 of 12 | 29 May 2018

English translation prepared by DIBt

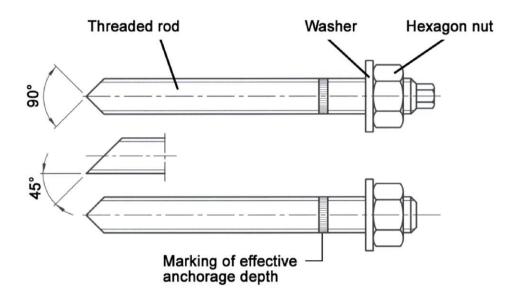
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

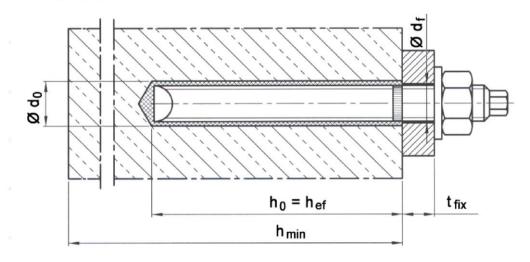
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 29 May 2018 by Deutsches Institut für Bautechnik

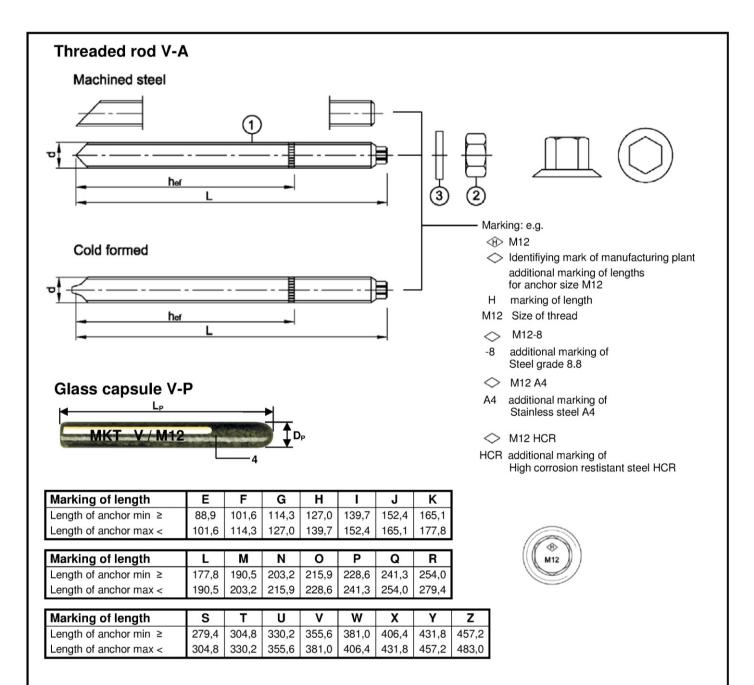
BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Baderschneider


Z33747.18 8.06.01-38/18


Glass Capsule V-P

Threaded rod V-A


Installation condition

Chemical Anchor V

Product description Insatallation situation Annex A1

Table A1: Dimensions

Part	Anchor size			М8	M10	M12	M16	M20	M24
		d	[mm]	8	10	12	16	20	24
1	Threaded rod	L 1) ≥	[mm]	95	100	120	140	190	235
	h _{ef}	[mm]	80	90	110	125	170	210	
2	Hexagon nut	SW	[mm]	13	17	19	24	30	36
4 Class sensule	D_P	[mm]	9	11	13	17	22	24	
4	Glass capsule	L _P	[mm]	80	80	95	95	175	210

¹⁾ other lengths on demand

dimensions in mm

Chemical	Anchor	٧
----------	---------------	---

Product description

Marking and dimensions

Annex A2

Part	Designation	Materials	
	zinc plated nised ≥ 5 µm acc. to EN ISO 404	42:1999 or hot-dip galvanised acc. to EN ISO 10684:2004+AC:2009	
1	Anchor rod	Steel, property class 5.8; 8.8, $A_5 > 8$ % fracture elongation	
2	Hexagon nut	Steel, Property class 5 (for anchor rods class 5.8) Property class 8 (for anchor rods class 8.8) acc. to EN ISO 898-2:2013	
3	Washer	Steel, zinc plated	
Stainl	ess steel A4		
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571 / 1.4362 / 1.4578 acc. to EN 10088-3:2014 Property class 70 and property class 80 $A_5 > 8\%$ fracture elongation	
2	Hexagon nut	Stainless steel A4 Property class 70 (for anchor rods class 70), Property class 80 (for anchor rods class 80) acc. to EN ISO 3506-2:2009	
3	Washer	Stainless steel A4 acc. to EN ISO 3506-1:2009	
High	corrosion resistant steel HCR		
1	Anchor rod	Material 1.4529 / 1.4565 acc. to EN 10088-3:2014 Property class 70 $A_5 > 8\%$ fracture elongation	
2	Hexagon nut	Material 1.4529 / 1.4565 acc. to EN 10088-3:2014 Property class 70, acc. EN ISO 3506-2:2009	
3	Washer	Material 1.4529 / 1.4565 acc. to EN 10088-3:2014	
Glass	capsule		
4	Glass capsule	Glass, Quartz, Resin, Hardener	
Che	mical Anchor V		
			Annex A3

Specifications of intended use

Chemical Anch	or V	Anchor rod V-A					
Chemical Anch	or v	M8 M10 M12 M16 M20 M24					
Static or quasi-s	tatic action	•					
		reinforced or unreinforced normal weight concrete without fibres acc. to EN 206:2013					
Base materials		strength classes C20/25 to C50/60, acc. to EN 206:2013					
		uncracked concrete					
Temperature Range I	-40°C to +40°C	max long term temperature +24°C and max short term temperature +40°C					
Temperature Range II	-40°C to +80°C	max long te	erm tempera	ure +50°C ar	nd max short	term temper	ature +80°C

Use conditions (environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement
 or to supports, etc.)
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages are designed in accordance with FprEN 1992-4:2016 and TR 055

Chemical Anchor V	
Intended use Specifications	Annex B1

Table B1: Installation parameters

Anchor size			М8	M10	M12	M16	M20	M24
Nominal diameter of drill hole	d_0	[mm]	10	12	14	18	25	28
Cutting diameter of drill hole	d _{cut} ≤	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Depth of drill hole	h_0	[mm]	80	90	110	125	170	210
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210
Diameter of clearance hole in the fixture	d_{f}	[mm]	9	12	14	18	22	26
Diameter of steel brush	d_{b}	[mm]	11	13	16	20	27	30
Maximum installation torque	T_{inst}	[Nm]	10	20	40	80	120	180

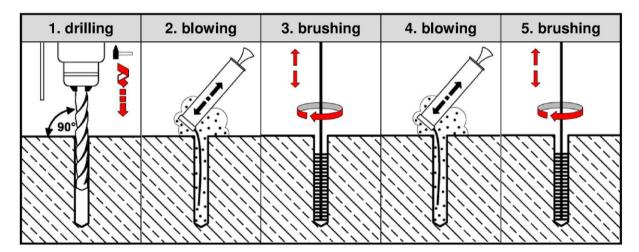
Table B2: Minimum member thickness, edge distance and spacing

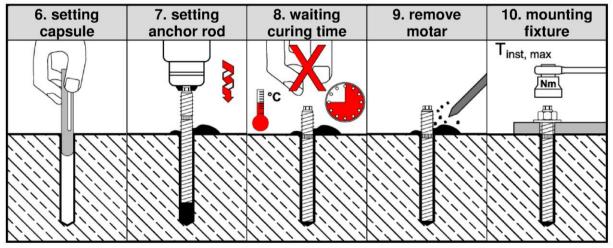
Anchor size			M8	M10	M12	M16	M20	M24
Minimum member thickness	h_{min}	[mm]	110	120	140	160	220	260
Minimum edge distance	C _{min}	[mm]	40	45	55	65	85	105
Minimum spacing	S _{min}	[mm]	40	45	55	65	85	105

Table B3: Minimum curing time

Temperature in the drill hole	Minimum	curing time
remperature in the drill hole	dry concrete	wet concrete
≥ 0°C	5 h	10 h
≥ + 5°C	1 h	2 h
≥ +20°C	20 min	40 min
≥ +30°C	10 min	20 min

Chemical Anchor V	
Intended use Installation parameters / Curing Time	Annex B2




Installation

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Dry or wet concrete, all sizes
- Hole drilling by hammer drilling
- · Cleaning the drill hole:

Removing possibly existing water in the drill hole completely and cleaning the drill hole by at least one blowing operation, by at least 1 x blowing / 1 x brushing / 1 x blowing / 1 x brushing operation by using the steel brush supplied by the manufacturer; before brushing cleaning the brush and checking whether the brush diameter according to Annex B2, Table B1 is still sufficient. The steel brush shall produce natural resistance as it enters the anchor hole. If this is not the case a new brush or a brush with a larger diameter must be used.

- Curing time must be observed pior to loading the anchor.
- Observe expiration date

Chemical Anchor V	
Intended use Installation	Annex B3

Tubic Ott. Ottalacteristic values for terision road.	Table C1:	Characteristic	values for	tension	loads
--	-----------	----------------	------------	---------	-------

Anch	or size			М8	M10	M12	M16	M20	M24
Steel	failure	3 6 0							
ce	Steel, zinc plated property class 5.8	$N_{Rk,s}$	[kN]	18	29	42	78	123	177
esistan	Steel, zinc plated property class 8.8	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
ristic re	Stainless steel A4 property class 70	$N_{Rk,s}$	[kN]	26	40	59	110	172	247
Characteristic resistance	Stainless steel A4 property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
5	High corrosion resistant steel HCR	$N_{Rk,s}$	[kN]	26	40	59	110	172	247
Comb	pined pull-out and concrete failure	•							
Chara	cteristic resistance in uncracked cor	crete C20)/25 to C5	0/60					
Temp	erature range I	τ_{Rk}	[N/mm ²]	10	11	9,5	9,5	8,5	7,5
Temperature range II τ_{Rk} [N/n		[N/mm ²]	10	11	9,5	8,0	7,0	5,5	
Conc	rete cone failure								
Facto	Factor for k ₁								
Edge distance $c_{cr,N}$ [mm]			[mm]	1,5 h _{ef}					
Spacing s _{cr,N} [mm]			[mm]	3 h _{ef}					
Splitting									
Chara	cteristic resistance	$N^0_{Rk,sp}$	[kN]	min $[N^0_{Rk,p}; N^0_{Rk,c}]$					
Edge distance $c_{cr,sp}$ [[mm]	1,5 h _{ef} 1 h _{ef}						
Spacing s _{cr,sp} [m			[mm]	3 h _{ef} 2 h _{ef}					
Installation factor γ_{inst} [-]			[-]	1,2					

Table C2: Displacements under tension load

Anchor size			M8	M10	M12	M16	M20	M24	
Tension load	N	[kN]	8	12	16	20	30	38	
Displacement	δ_{N0}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4	
Displacement	$\delta_{N\infty}$	[mm]	0,5						

Chemical Anchor V	
Performance Characteristic values and displacements under tension load	Annex C1

Anch	or size			M8	M10	M12	M16	M20	M24
Steel	failure without lever arm								
ır	Steel, zinc plated property class 5.8	$V^0_{ \text{Rk},s}$	[kN]	9	14	21	39	61	88
shes se	Steel, zinc plated property class 8.8	$V^0_{ \text{Rk},s}$	[kN]	15	23	33	63	98	141
Characteristic shear resistance	Stainless steel A4 property class 70	$V^0_{Rk,s}$	[kN]	13	20	29	55	86	124
harac	Stainless steel A4 property class 80	$V^0_{Rk,s}$	[kN]	15	23	33	62	98	141
0	High corrosion resistant steel HCR	$V^0_{\text{Rk,s}}$	[kN]	13	20	29	55	86	124
Ductili	factor k ₇ [-]			0,8					
Steel	failure with lever arm								
βu	Steel, zinc plated property class 5.8	$M^0_{Rk,s}$	[Nm]	19	37	65	166	325	561
bendi It	Steel, zinc plated property class 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	898
teristic b moment	Stainless steel A4 property class 70	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	785
Characteristic bending moment	Stainless steel A4 property class 80	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	898
ပ်	High corrosion resistant steel HCR	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	785
Pry-o	ut failure				in e				
Factor K ₈ [-]				2,0					
Concrete edge failure									
Effecti	ve length of anchor	I _f	[mm]	80	90	110	125	170	210

Table C4: Displacements under shear load

Effective diameter of anchor

Installation factor

Anchor size			М8	M10	M12	M16	M20	M24
Shear load	V	[kN]	5	8	12	22	35	50
Diaglacement	δ_{V0}	[mm]	2	3	3	4	5	5
Displacement	$\delta_{V_{\infty}}$	[mm]	4	5	5	6	7	7

[mm]

[-]

10

12

14

18

1,0

25

28

d_{nom}

 γ_{inst}

Chemical Anchor V	
Performance Characteristic values and displacements under shear load	Annex C2